top of page


Öffentlich·55 Mitglieder


Television, sometimes shortened to TV, is a telecommunication medium for transmitting moving images and sound. The term can refer to a television set, or the medium of television transmission. Television is a mass medium for advertising, entertainment, news, and sports.


Download Zip:

Television became available in crude experimental forms in the late 1920s, but only after several years of further development was the new technology marketed to consumers. After World War II, an improved form of black-and-white television broadcasting became popular in the United Kingdom and the United States, and television sets became commonplace in homes, businesses, and institutions. During the 1950s, television was the primary medium for influencing public opinion.[1] In the mid-1960s, color broadcasting was introduced in the U.S. and most other developed countries.

In 2013, 79% of the world's households owned a television set.[2] The replacement of earlier cathode-ray tube (CRT) screen displays with compact, energy-efficient, flat-panel alternative technologies such as LCDs (both fluorescent-backlit and LED), OLED displays, and plasma displays was a hardware revolution that began with computer monitors in the late 1990s. Most television sets sold in the 2000s were flat-panel, mainly LEDs. Major manufacturers announced the discontinuation of CRT, Digital Light Processing (DLP), plasma, and even fluorescent-backlit LCDs by the mid-2010s.[3][4] In the near future, LEDs are expected to be gradually replaced by OLEDs.[5] Also, major manufacturers have announced that they will increasingly produce smart TVs in the mid-2010s.[6][7][8] Smart TVs with integrated Internet and Web 2.0 functions became the dominant form of television by the late 2010s.[9]

Television signals were initially distributed only as terrestrial television using high-powered radio-frequency television transmitters to broadcast the signal to individual television receivers. Alternatively television signals are distributed by coaxial cable or optical fiber, satellite systems and, since the 2000s via the Internet. Until the early 2000s, these were transmitted as analog signals, but a transition to digital television was expected to be completed worldwide by the late 2010s. A standard television set consists of multiple internal electronic circuits, including a tuner for receiving and decoding broadcast signals. A visual display device that lacks a tuner is correctly called a video monitor rather than a television.

The word television comes from Ancient Greek τῆλε (tele) 'far', and Latin visio 'sight'. The first documented usage of the term dates back to 1900, when the Russian scientist Constantin Perskyi used it in a paper that he presented in French at the first International Congress of Electricity, which ran from 18 to 25 August 1900 during the International World Fair in Paris.

Also, in the 1940s and throughout the 1950s, during the early rapid growth of television programming and television set ownership in the United States, another slang term became widely used in that period and continues to be used today to distinguish productions originally created for broadcast on television from films developed for presentation in movie theaters.[12] The "small screen", as both a compound adjective and noun, became specific references to television, while the "big screen" was used to identify productions made for theatrical release.[12]

Facsimile transmission systems for still photographs pioneered methods of mechanical scanning of images in the early 19th century. Alexander Bain introduced the facsimile machine between 1843 and 1846. Frederick Bakewell demonstrated a working laboratory version in 1851.[citation needed] Willoughby Smith discovered the photoconductivity of the element selenium in 1873. As a 23-year-old German university student, Paul Julius Gottlieb Nipkow proposed and patented the Nipkow disk in 1884 in Berlin.[13] This was a spinning disk with a spiral pattern of holes in it, so each hole scanned a line of the image. Although he never built a working model of the system, variations of Nipkow's spinning-disk "image rasterizer" became exceedingly common.[14] Constantin Perskyi had coined the word television in a paper read to the International Electricity Congress at the International World Fair in Paris on 24 August 1900. Perskyi's paper reviewed the existing electromechanical technologies, mentioning the work of Nipkow and others.[15] However, it was not until 1907 that developments in amplification tube technology by Lee de Forest and Arthur Korn, among others, made the design practical.[16]

By the 1920s, when amplification made television practical, Scottish inventor John Logie Baird employed the Nipkow disk in his prototype video systems. On 25 March 1925, Baird gave the first public demonstration of televised silhouette images in motion, at Selfridges's department store in London.[20] Since human faces had inadequate contrast to show up on his primitive system, he televised a ventriloquist's dummy named "Stooky Bill", whose painted face had higher contrast, talking and moving. By 26 January 1926, he had demonstrated before members of the Royal Institution the transmission of an image of a face in motion by radio. This is widely regarded as the world's first true public television demonstration, exhibiting light, shade and detail.[21] Baird's system used the Nipkow disk for both scanning the image and displaying it. A brightly illuminated subject was placed in front of a spinning Nipkow disk set with lenses which swept images across a static photocell. The thallium sulphide (Thalofide) cell, developed by Theodore Case in the U.S., detected the light reflected from the subject and converted it into a proportional electrical signal. This was transmitted by AM radio waves to a receiver unit, where the video signal was applied to a neon light behind a second Nipkow disk rotating synchronized with the first. The brightness of the neon lamp was varied in proportion to the brightness of each spot on the image. As each hole in the disk passed by, one scan line of the image was reproduced. Baird's disk had 30 holes, producing an image with only 30 scan lines, just enough to recognize a human face.[22] In 1927, Baird transmitted a signal over 438 miles (705 km) of telephone line between London and Glasgow.[23] Baird's original 'televisor' now resides in the Science Museum, South Kensington.

In 1928, Baird's company (Baird Television Development Company/Cinema Television) broadcast the first transatlantic television signal, between London and New York, and the first shore-to-ship transmission. In 1929, he became involved in the first experimental mechanical television service in Germany. In November of the same year, Baird and Bernard Natan of Pathé established France's first television company, Télévision-Baird-Natan. In 1931, he made the first outdoor remote broadcast, of The Derby.[24] In 1932, he demonstrated ultra-short wave television. Baird's mechanical system reached a peak of 240-lines of resolution on BBC telecasts in 1936, though the mechanical system did not scan the televised scene directly. Instead a 17.5 mm film was shot, rapidly developed and then scanned while the film was still wet.[citation needed]

A U.S. inventor, Charles Francis Jenkins, also pioneered the television. He published an article on "Motion Pictures by Wireless" in 1913; transmitted moving silhouette images for witnesses in December 1923; and on 13 June 1925 publicly demonstrated synchronized transmission of silhouette pictures. In 1925 Jenkins used the Nipkow disk and transmitted the silhouette image of a toy windmill in motion, over a distance of 5 miles (8 km), from a naval radio station in Maryland to his laboratory in Washington, D.C., using a lensed disk scanner with a 48-line resolution.[25][26] He was granted U.S. Patent No. 1,544,156 (Transmitting Pictures over Wireless) on 30 June 1925 (filed 13 March 1922).[27]

Herbert E. Ives and Frank Gray of Bell Telephone Laboratories gave a dramatic demonstration of mechanical television on 7 April 1927. Their reflected-light television system included both small and large viewing screens. The small receiver had a 2-inch-wide by 2.5-inch-high screen (5 by 6 cm). The large receiver had a screen 24 inches wide by 30 inches high (60 by 75 cm). Both sets could reproduce reasonably accurate, monochromatic, moving images. Along with the pictures, the sets received synchronized sound. The system transmitted images over two paths: first, a copper wire link from Washington to New York City, then a radio link from Whippany, New Jersey. Comparing the two transmission methods, viewers noted no difference in quality. Subjects of the telecast included Secretary of Commerce Herbert Hoover. A flying-spot scanner beam illuminated these subjects. The scanner that produced the beam had a 50-aperture disk. The disc revolved at a rate of 18 frames per second, capturing one frame about every 56 milliseconds. (Today's systems typically transmit 30 or 60 frames per second, or one frame every 33.3 or 16.7 milliseconds respectively.) Television historian Albert Abramson underscored the significance of the Bell Labs demonstration: "It was in fact the best demonstration of a mechanical television system ever made to this time. It would be several years before any other system could even begin to compare with it in picture quality."[28]

In 1928, WRGB, then W2XB, was started as the world's first television station. It broadcast from the General Electric facility in Schenectady, NY. It was popularly known as "WGY Television". Meanwhile, in the Soviet Union, Léon Theremin had been developing a mirror drum-based television, starting with 16 lines resolution in 1925, then 32 lines and eventually 64 using interlacing in 1926. As part of his thesis, on 7 May 1926, he electrically transmitted, and then projected, near-simultaneous moving images on a 5-square-foot (0.46 m2) screen.[26] 041b061a72


Willkommen in der Gruppe! Hier können Sie sich mit anderen M...
Gruppenseite: Groups_SingleGroup
bottom of page